Война токов
Активное использование постоянного тока началось в конце 19 века. Тогда Эдисон довел до ума лампочку (1890) и основал первые в Нью-Йорке электростанции, которые производили постоянный ток напряжением 110 Вольт.
Использование постоянного тока было связано с существенными потерями при его передаче на большие расстояния. Переменный ток нельзя было использовать из-за того, что не было соответствующих счетчиков и моторов, работавших на переменном токе. Так же был затруднен процесс преобразования постоянного тока в переменный. При этом переменный ток можно было без потерь передавать на большие расстояния.
В то время в Америку из Сербии приехал Никола Тесла, который устроился на работу в компанию к Эдисону. Тесла изобрел электродвигатель переменного тока, понял все выгоды и предложил Эдисону его использование.
Тесла и Эдисон
Эдисон не послушал Теслу и к тому же не выплатил ему зарплату. Так и началось знаменитое противостояние изобретателей — война токов.
Она длилась более ста лет и закончилась в 2007 году. Тогда Нью-Йорк полностью перешел на электроснабжение переменным током.
Численное значение
В Международной системе единиц
До изменения СИ 2018—2019 годов
Поскольку в СИ для магнитной постоянной было справедливо точное равенство \displaystyle{ \mu_0 = 4 \pi\ \times \ 10^{-7}\ }Гн/м, то для электрической постоянной выполнялось соотношение
- \displaystyle{ \varepsilon_0 = \frac{1}{4 \pi c^2} \cdot 10^{7} }м/Гн,
также являвшееся точным.
Учитывая, что скорости света в СИ приписано точное значение, по определению равное 299 792 458 м/с, из последнего соотношения следует численное значение \displaystyle{ \varepsilon_0 } в СИ:
- \displaystyle{ \varepsilon_0 = \frac{1}{4 \pi\cdot\ 299792458^2 \times 10^{-7}} } Ф/м ≈ 8,85418781762039 · 10−12 Ф·м−1.
Или, выражая то же через основные единицы СИ,
- ε ≈ 8,85418781762039 · 10−12 м−3·кг−1·с4·А2.
После изменений СИ 2018—2019 годов
С 2019 года вступили в силу изменения в СИ, включающие, в частности, переопределение ампера на основе фиксации численного значения элементарного заряда. Это привело к тому, что значение электрической постоянной стало экспериментально определяемой величиной, хотя численно её значение осталось прежним с высокой точностью. Значение электрической постоянной, рекомендованное CODATA:
- ε = 8,8541878128(13) · 10−12 м−3·кг−1·с4·А2, или Ф·м−1.
В системе СГС электрическая постоянная как коэффициент, связывающий напряжённость и индукцию электрического поля в вакууме, также может быть введена. При этом в различных вариантах системы СГС электрическая постоянная имеет разную размерность и значение. Конкретно, Гауссова система единиц и система СГСЭ построены так, что электрическая постоянная безразмерна и равна 1, а в системе СГСМ она равна ε = 1/c2 ≈ 1,11265005605362 · 10−21 с2·см−2.
Потенциал электрического поля. Разность потенциалов
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.
Обозначение – \( \varphi \), единица измерения в СИ – вольт (В).
Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.
Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:
Обозначение – \( \Delta\varphi \), единица измерения в СИ – вольт (В).
Иногда разность потенциалов обозначают буквой \( U \) и называют напряжением.
Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \), а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \). Тогда работа электростатического поля равна:
Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле. В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки
В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность
В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.
Потенциал поля точечного заряда \( q \) в точке, удаленной от него на расстояние \( r \), вычисляется по формуле:
Для наглядного представления электрического поля используют эквипотенциальные поверхности.
Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (\( r =R \), где \( R \) – радиус шара). Напряженность поля внутри шара равна нулю
Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.
Свойства эквипотенциальных поверхностей
- Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
- Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.
Разность потенциалов и напряженность связаны формулой:
Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:
Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.
Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов. Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил
Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.
Алгоритм решения таких задач:
- установить характер и особенности электростатических взаимодействий объектов системы;
- ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
- записать законы сохранения и движения для объектов;
- выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
- составить систему уравнений и решить ее относительно искомой величины;
- проверить решение.
Выражение через параметры вакуумного поля[править | править код]
В концепции силового вакуумного поля предполагается, что электрогравитационный вакуум заполнен потоками частиц, создающих гравитационные и электромагнитные силы между телами. В частности, за возникновение силы Кулона между зарядами считаются ответственными потоки заряженных частиц – праонов, движущихся с релятивистскими скоростями и передающих свой импульс заряженному веществу.
В модели кубического распределения потоков праонов для электрической постоянной получается следующее: ε=e26pqDqϑ2=e2εcqϑ2.~ \varepsilon_0 = \frac {e^2}{6 p_q D_{0q} \vartheta^2 }= \frac { e^2} {\varepsilon_{cq}\vartheta^2 } .
Здесь pq~ p_q есть импульс праонов, взаимодействующих с заряженным веществом; мощность флюенса Dq~ D_{0q} обозначает количество праонов dN, попавших за время dt на перпендикулярную потоку площадь dA одного из граней некоторого куба, ограничивающего рассматриваемый объём; ϑ=2,67⋅10−30~ \vartheta = 2,67 \cdot 10^{-30} м² представляет собой сечение взаимодействия праонов с нуклонами; e~ e – элементарный заряд; εcq=4⋅1032~ \varepsilon_{cq}= 4 \cdot 10^{32} Дж/м³ – плотность энергии потоков праонов для кубического распределения.
В модели сферического распределения потоков праонов в пространстве:
ε=e216πpqBqϑ2=3e22εsqϑ2,~ \varepsilon_0 = \frac {e^2}{16\pi p_q B_{0q} \vartheta^2} = \frac { 3e^2}{2 \varepsilon_{sq} \vartheta^2},
где мощность флюенса Bq~ B_{0q} обозначает количество праонов dN, попавших за время dt из единичного телесного угла dα d{\alpha} внутрь сферической поверхности dA; εsq=6⋅1032~ \varepsilon_{sq} = 6 \cdot 10^{32} Дж/м³ – плотность энергии потоков праонов для сферического распределения.
Отсюда следует, что электрическая постоянная является динамической переменной, зависящей от параметров частиц вакуумного поля.
Переменный ток
Переменный ток используется в промышленности и электроснабжении. Именно его получают на станциях и отправляют к потребителям. Уже на месте преобразование переменного электрического тока в постоянный происходит с помощью инверторов.
Переменный ток — alternating current (AC). Постоянный ток — direct current (DC). Аббревиатуру AC/DC можно увидеть на трансформаторных будках, где происходит преобразование. А еще это название одной отличной австралийской рок-группы.
А вот и наглядное изображение переменного тока.
Переменный ток
Переменный ток течет в цепи в двух направлениях: туда и обратно. Одно из них считается положительным, а второе — отрицательным.
Так как величина тока меняется не только по направлению, но и по величине, не думайте, что в вашей розетке постоянно 220 Вольт. 220 — это действующее значение напряжения, которое бывает 50 раз в секунду. Кстати, в Америке используется другой стандарт переменного тока в сети: 110 Вольт и 60 Герц.
Электрическая постоянная
Обозначают ее (large varepsilon_{0}), она описывает электрические свойства вакуума и является одной из фундаментальных физических постоянных.
Значение электрической постоянной равно:
Совместно с магнитной постоянной (ссылка) (large mu_{0}) определяет скорость, с которой в вакууме распространяются электромагнитные волны (например, видимый свет).
В формуле закона Кулона присутствует константа «k». Число «k» вычисляют по формуле, которая связывает его с постоянной (large varepsilon_{0}) так:
Так же, эта константа встречается в формуле, описывающей напряженность электрического поля.
Закон сохранения электрического заряда. Закон Кулона
- Подробности
- Обновлено 14.08.2018 00:17
- Просмотров: 868
Электродинамика — наука о свойствах электромагнитного поля.Электромагнитное поле — определяется движением и взаимодействием заряженных частиц.Проявление эл/магнитного поля — это действие эл/магнитных сил:
1) силы трения и силы упругости в макромире;
2) действие эл/магнитных сил в микромире (строение атома, сцепление атомов в молекулы, превращение элементарных частиц)Открытие эл/магнитного поля — Дж. Максвелл.
ЭЛЕКТРОСТАТИКА
— раздел электродинамики, изучает покоящиеся электрически заряженные тела.Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;
— взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).Электрический заряд — физическая величина, определяет интенсивность электромагнитных взаимодействий.
Существует 2 знака эл.зарядов: положительный и отрицательный.
Частицы с одноименными зарядами отталкиваются, с разноименными — притягиваются.
Протон имеет положительный заряд, электрон — отрицательный, нейтрон — электрически нейтрален.Элементарный заряд — минимальный заряд, разделить который невозможно.
Чем объяснить наличие электромагнитных сил в природе? — в состав всех тел входят заряженные частицы.
В обычном состоянии тела электрически нейтральны (т.к. атом нейтрален), и электромагнитные силы не проявляются.Тело заряжено, если имеет избыток зарядов какого-либо знака:
отрицательно заряжено — если избыток электронов;
положительно заряжено — если недостаток электронов.Электризация тел — это один из способов получения заряженных тел, например, соприкосновением).
При этом оба тела заряжаются , причем заряды противоположны по знаку, но равны по модулю.
Закон сохранения электрического заряда
В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.
( … но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).
Замкнутая система- система частиц, в которую не входят извне и не выходят наружу заряженные частицы.
Закон Кулона — основной закон электростатики.
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.
Когда тела считаются точечными? — если расстояние между ними во много раз больше размеров тел.
Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.Единица электрического заряда: 1 Кл — это заряд, проходящий за 1 секунду через поперечное сечение проводника при силе тока 1 А.
1 Кл — очень большой заряд. Элементарный заряд:
Коэффициент пропорциональности
Принято записывать коэффициент пропорциональности в законе Кулона в вакууме в виде
где электрическая постоянная
Закон Кулона для величины силы взаимодействия зарядов в произвольной среде (в СИ):
Диэлектрическая проницаемость среды характеризует электрические свойства среды. В вакууме
Таким образом, сила Кулона зависит от свойств среды между заряженными телами.
Следующая страница «Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля»
Назад в раздел «10-11 класс»
Электростатика и законы постоянного тока — Класс!ная физика
Электрический заряд. Электризация. Закон сохранения электрического заряда. Закон Кулона. Единица электрического заряда —
Близкодействие и дальнодействие. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей. Силовые линии электрического поля —
Проводники и диэлектрики в электростатическом поле. Поляризация диэлектриков —
Потенциальная энергия тела в электростатическом поле. Потенциал электростатического поля и разность потенциалов. Связь между напряженностью электростатического поля и разхностью потенциалов —
Электроемкость. Конденсаторы. Энергия заряженного конденсатора —
Электрический ток. Сила тока. Условия, необходимые для существования электрического тока. Закон Ома для участка цепи. Сопротивление —
Работа и мощность тока
Диэлектрики в электрическом поле
Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.
В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.
В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.
Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.
Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.
Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.
Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.
Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:
В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.
Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.
Электризация тел
Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.
Способы электризации:
- трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
- через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
- при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
- при ударе;
- под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.
Диэлектрики в электрическом поле. Классификация, связанные заряды, вектор поляризованности. Связь между диэлектрической проницаемостью и восприимчивостью, связанными зарядами и поляризованностью
Связанные заряды. В результате процесса поляризации в объеме (или на поверхности) диэлектрика возникают нескомпенсированные заряды, которые называются поляризационными, или связанными.
Частицы, обладающие этими зарядами, входят в состав молекул и под действием внешнего электрического поля смещаются из своих положений равновесия, не покидая молекулы, в состав которой они входят. Связанные заряды характеризуют поверхностной плотностью . Выделим в поляризованном диэлектрике наклонную призму с основанием S и ребром L, параллельным вектору поляризации P (рис. 2.4). В результате поляризации на одном из оснований призмы появятся отрицательные заряды с поверхностной плотностью , а на другой положительные заряды с плотностью . С макроскопической точки зрения, рассматриваемый объем эквивалентен диполю, образованному зарядами и , которые отстоят друг от друга на расстояние L, тогда электрический момент призмы равен .
С другой стороны, электрический момент единицы объема равен
P
Приравняв друг к другу оба выражения для электрического момента, получаем, что поверхностная плотность связанных зарядов равна нормальной составляющей вектора поляризации:
- где n — единичный вектор нормали к поверхности диэлектрика.
- Если вектор поляризации P различен в разных точках объема диэлектрика, то в диэлектрике возникают объемные поляризационные заряды, объемная плотность которых .
Электрическое поле в диэлектрике. Рассмотрим плоский однородный диэлектрический слой, расположенный между двумя разноименно заряженными плоскостями (рис. 2.5). Пусть напряженность электрического поля, которое создается этими плоскостями в вакууме, равна ,
где — поверхностная плотность зарядов на пластинах (эти заряды называют свободными). Под действием поля диэлектрик поляризуется, и на его гранях появляются поляризационные или связанные заряды. Эти заряды создают в диэлектрике электрическое поле , которое направлено против внешнего поля .
- ,
- где — поверхностная плотность связанных зарядов. Результирующее поле внутри диэлектрика
- .
Поверхностная плотность связанных зарядов меньше плотности свободных зарядов, и не все поле E0 компенсируется полем диэлектрика: часть линий напряженности проходит сквозь диэлектрик, другая часть обрывается на связанных зарядах (рис. 2.5). Вне диэлектрика . Следовательно, в результате поляризации поле внутри диэлектрика оказывается слабее, чем внешнее .
где — диэлектрическая проницаемость среды. Из формулы видно, что диэлектрическая проницаемость показывает, во сколько раз напряженность поля в вакууме больше напряженности поля в диэлектрике. Для вакуума , для диэлектриков .
- Электрическая поляризуемость среды характеризуется величиной диэлектрической восприимчивости, являющейся коэффициентом линейной связи между поляризацией диэлектрика P и внешним электрическим полем E в достаточно малых полях:
- Восприимчивость связана с диэлектрической проницаемостью ε соотношением
Электроемкость (определение, единицы измерения). Емкость конденсатора. Плоский конденсатор.
- Единицы емкости.
- Емкостью 1Ф (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.
- Емкостью 1Ф обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.
- Емкость Земли 700 мкФ
- Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.
- Конденсаторы (condensare — сгущение).
Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы — лейденская банка (Мушенбрук, сер. XVII в.).
Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники наз.
обкладками конденсатора.
Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.
Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .
При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды — конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.
Опыт Милликена-Иоффе
Исследователи электризовали очень мелкие металлические крупинки цинка (Иоффе) или капельки масла (Милликикен). Эти мелкие частицы помещались в электрическое поле между двух заряженных пластин. Под действием силы тяжести частицы стремились упасть на нижнюю пластину. Но изменяя величину электрического поля, ученые могли регулировать скорость их падения или вообще удерживать в равновесии, компенсируя силу тяжести электрическим воздействием.
Заряд пылинок и капель варьировали (изменяли) с помощью подсветки ультрафиолетовым светом. Результаты наблюдений и измерений физических величин показали, что заряды капель и пылинок всегда изменялись скачкообразно, но всегда в целое число раз (в 2, 3, 4, 5 и т.д. раз) больше некоторого минимального заряда.
Результаты удалось объяснить только следующим образом: пылинке (капле) каждый раз сообщается или отбирается только наименьший заряд или целое число таких зарядов.
Этот заряд далее становится неделимым. Частица с наименьшим электрическим зарядом была названа электроном. Минимальный (элементарный) электрический заряд qe равен:
$$ q_e = 1,602*10^{-19} Кл $$
Рис. 2. Схема опыта Милликена-Иоффе
Электрический заряд — это одно из краеугольных свойств электрона. Заряд неотделим от электрона.
В 1928 г. французский физик Поль Дирак теоретически предсказал возможность существования античастицы, которую он назвал позитроном. Эта частица должна обладать точно такими же параметрами, которые имеет электрон, кроме одного — у нее положительный электрический заряд. В 1932 г. эту частицу экспериментально обнаружил американский физик Андерсон при изучении космического излучения. В исследовательских целях позитроны получают, сталкивая высокоэнергетичные частицы в ускорителях (синхрофазотронах, коллайдерах).
Рис. 3. Ускоритель частиц, коллайдер
Что мы узнали?
Итак, из этой статьи мы узнали кратко о делимости электрического заряда. Минимальным пределом делимости заряда является заряд электрона. Все остальные заряды, существующие в природе, кратны заряду электрона.
-
/5
Вопрос 1 из 5
Как развивалось знание о существовании электрического заряда
К понятию электрического заряда исследователи пришли не сразу. Понадобилось несколько столетий, чтобы дать четкое определение этой краеугольной физической величины:
- Слово электрон (от греческого слова “янтарь”) появилось еще в Древней Греции, когда была замечена таинственная способность янтаря притягивать легкие предметы после того, как натирали куском шерсти;
- Англичанин Уильям Гилберт в конце XVI века назвал предметы, получившие способность притягивать небольшие предметы, наэлектризованными;
- Французский физик Шарль Дюфе в 1729 г. открыл существование двух типов зарядов. Один образовывался от трения стекла о шелк, а другой — смолы о шерсть. Поэтому он назвал их “смоляным” и “стеклянным”;
- Американский ученый Бенджамин Франклин первым в 1747 г. ввел понятие об отрицательном “—” и положительном зарядах “+”;
- Французский физик Шарль Кулон в 1785 г. открыл закон, согласно которому сила взаимодействия F двух точечных неподвижных заряженных тел прямо пропорциональна произведению абсолютных значений зарядов q1 и q2 и обратно пропорциональна квадрату расстояния r между телами:
$$ F=k*{q_1*q_2\over r^2} $$
Понимание делимости электрического заряда пришло значительно позже.
Вместо коэффициента k в законе Кулона чаще используется так называемая электрическая постоянная ε:
$ k ={1\over 4*π*ε_0} $
где:
π = 3,14;
$ε_0 = 8,85*10^{-12} {Кл^2\over Н*м^2} $.